4,336 research outputs found

    The Kinematic and Plasma Properties of X-ray Knots in Cassiopeia A from the Chandra HETGS

    Full text link
    We present high-resolution X-ray spectra from the young supernova remnant Cas A using a 70-ks observation taken by the Chandra High Energy Transmission Grating Spectrometer (HETGS). Line emission, dominated by Si and S ions, is used for high-resolution spectral analysis of many bright, narrow regions of Cas A to examine their kinematics and plasma state. These data allow a 3D reconstruction using the unprecedented X-ray kinematic results: we derive unambiguous Doppler shifts for these selected regions, with values ranging between -2500 and +4000 km/s. Plasma diagnostics of these regions, derived from line ratios of resolved He-like triplet lines and H-like lines of Si, indicate temperatures largely around 1 keV, which we model as O-rich reverse-shocked ejecta. The ionization age also does not vary considerably over these regions of the remnant. The gratings analysis was complemented by the non-dispersed spectra from the same dataset, which provided information on emission measure and elemental abundances for the selected Cas A regions. The derived electron density of X-ray emitting ejecta varies from 20 to 200 cm^{-3}. The measured abundances of Mg, Si, S and Ca are consistent with O being the dominant element in the Cas A plasma. With a diameter of 5 arcmin, Cas A is the largest source observed with the HETGS to date. We, therefore, describe the technique we use and some of the challenges we face in the HETGS data reduction from such an extended, complex object.Comment: 26 pages, 16 figures, evised version (minor changes), accepted for publication in ApJ (Oct 20 2006

    Stellar mass-loss near the Eddington limit. Tracing the sub-photospheric layers of classical Wolf-Rayet stars

    Full text link
    Towards the end of their evolution hot massive stars develop strong stellar winds and appear as emission line stars, such as WR stars or LBVs. The quantitative description of the mass loss in these important pre-SN phases is hampered by unknowns such as clumping and porosity due to an in-homogeneous wind structure, and by an incomplete theoretical understanding of optically thick stellar winds. In this work we investigate the conditions in deep atmospheric layers of WR stars to find out whether these comply with the theory of optically thick winds, and whether we find indications of clumping in these layers. We use a new semi-empirical method to determine sonic-point optical depths, densities, and temperatures for a large sample of WR stars of the carbon (WC) and oxygen (WO) sequence. Based on an artificial model sequence we investigate the reliability of our method and its sensitivity to uncertainties in stellar parameters. We find that the WR stars in our sample obey an approximate relation with P_rad/P_gas~80 at the sonic point. This 'wind condition' is ubiquitous for radiatively driven, optically thick winds, and sets constraints on possible wind/envelope solutions affecting radii, mass-loss rates, and clumping properties. Our results suggest that the presence of an optically thick wind may force many stars near the Eddington limit to develop clumped, radially extended sub-surface zones. The clumping in these zones is most likely sustained by the non-linear strange-mode instability, and may be the origin of the observed wind clumping. The properties of typical late-type WC stars comply with this model. Solutions without sub-surface clumping and inflation are also possible but demand for compact stars with comparatively low mass-loss rates. These objects may resemble the small group of WO stars with their exceptionally hot stellar temperatures and highly ionized winds.Comment: accepted by A&

    Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of Very Massive Stars

    Full text link
    In a recent study star-forming galaxies with HeII emission between redshifts 2 and 4.6 have been found to occur in two modes, distinguished by the width of their HeII emission lines. Broad HeII emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars while narrow HeII emission has been attributed to nebular emission excited by a population of very hot PopIII stars formed in pockets of pristine gas at moderate redshifts. In this work we propose an alternative scenario for the origin of the narrow HeII emission, namely very massive stars (VMS) at low metallicity (Z) which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. We estimate the expected HeII line fluxes and equivalent widths based on wind models for VMS and population synthesis models, and compare the results with recent observations of star-forming galaxies at moderate redshifts. The observed HeII line strengths and equivalent widths are in line with what is expected for a population of VMS in one or more young super-clusters located within these galaxies. In our scenario the two observed modes of HeII emission originate from massive stellar populations in distinct evolutionary stages at low Z. If this interpretation is correct there is no need to postulate the existence of PopIII stars at moderate redshifts to explain the observed narrow HeII emission. An interesting possibility is the existence of self-enriched VMS with similar WR-type spectra at extremely low Z. Stellar HeII emission from such very early generations of VMS may be detectable in future studies of star-forming galaxies at high redshifts with the James Webb Space Telescope. The fact that the HeII emission of VMS is largely neglected in current population synthesis models will generally affect the interpretation of the integrated spectra of young stellar populations.Comment: 4 pages, 1 figure, A&A letters (accepted

    Implications of the metallicity dependence of Wolf-Rayet winds

    Full text link
    Aims: Recent theoretical predictions for the winds of Wolf-Rayet stars indicate that their mass-loss rates scale with the initial stellar metallicity in the local Universe.We aim to investigate how this predicted dependence affects the models of Wolf-Rayet stars and their progeny in different chemical environments. Methods: We compute models of stellar structure and evolution for Wolf-Rayet stars for different initial metallicities, and investigate how the scaling of the Wolf-Rayet mass-loss rates affects the final masses, the lifetimes of the WN and WC subtypes, and how the ratio of the two populations vary with metallicity. Results: We find significant effects of metallicity dependent mass-loss rates for Wolf-Rayet stars. For models that include the scaling of the mass-loss rate with initial metallicity, all WR stars become neutron stars rather than black holes at twice the solar metallicity; at lower ZZ, black holes have larger masses. We also show that our models that include the mass-loss metallicity scaling closely reproduce the observed decrease of the relative population of WC over WN stars at low metallicities.Comment: 8 pages, 9 figures, accepted by Astronomy & Astrophysic

    Capillary Waves in a Colloid-Polymer Interface

    Full text link
    The structure and the statistical fluctuations of interfaces between coexisting phases in the Asakura-Oosawa (AO) model for a colloid--polymer mixture are analyzed by extensive Monte Carlo simulations. We make use of a recently developed grand canonical cluster move with an additional constraint stabilizing the existence of two interfaces in the (rectangular) box that is simulated. Choosing very large systems, of size LxLxD with L=60 and D=120, measured in units of the colloid radius, the spectrum of capillary wave-type interfacial excitations is analyzed in detail. The local position of the interface is defined in terms of a (local) Gibbs surface concept. For small wavevectors capillary wave theory is verified quantitatively, while for larger wavevectors pronounced deviations show up. For wavevectors that correspond to the typical distance between colloids in the colloid-rich phase, the interfacial fluctuations exhibit the same structure as observed in the bulk structure factor. When one analyzes the data in terms of the concept of a wavevector-dependent interfacial tension, a monotonous decrease of this quantity with increasing wavevector is found. Limitations of our analysis are critically discussed.Comment: 12 pages, 15 figure

    Internal entrainment and the origin of jet-related broad-band emission in Centaurus A

    Get PDF
    Date of Acceptance: 14/11/2014The dimensions of Fanaroff-Riley class I jets and the stellar densities at galactic centres imply that there will be numerous interactions between the jet and stellar winds. These may give rise to the observed diffuse and 'knotty' structure of the jets in the X-ray, and can also mass load the jets. We performed modelling of internal entrainment from stars intercepted by Centaurus A's jet, using stellar evolution- and wind codes. From photometry and a codesynthesized population of 12 Gyr (Z = 0.004), 3 Gyr (Z = 0.008) and 0-60 Myr (Z = 0.02) stars, appropriate for the parent elliptical NGC 5128, the total number of stars in the jet is ∼8 × 108. Our model is energetically capable of producing the observed X-ray emission, even without young stars. We also reproduce the radio through X-ray spectrum of the jet, albeit in a downstream region with distinctly fewer young stars, and recover the mean X-ray spectral index.We derive an internal entrainment rate of ∼2.3 × 10-3M yr-1 which implies substantial jet deceleration. Our absolute nucleosynthetic yields for the Asymptotic Giant Branch stellar population in the jet show the highest amounts for 4He, 16O, 12C, 14N and 20Ne. If some of the events at ≥55 EeV detected by the Pierre Auger Observatory originate from internal entrainment in Centaurus A, we predict that their composition will be largely intermediate-mass nuclei with 16O, 12C and 14N the key isotopes.Peer reviewe

    The loss-limited electron energy in SN 1006: effects of the shock velocity and of the diffusion process

    Full text link
    The spectral shape of the synchrotron X-ray emission from SN 1006 reveals the fundamental role played by radiative losses in shaping the high-energy tail of the electron spectrum. We analyze data from the XMM-Newton SN 1006 Large Program and confirm that in both nonthermal limbs the loss-limited model correctly describes the observed spectra. We study the physical origin of the observed variations of the synchrotron cutoff energy across the shell. We investigate the role played by the shock velocity and by the electron gyrofactor. We found that the cutoff energy of the syncrotron X-ray emission reaches its maximum value in regions where the shock has experienced its highest average speed. This result is consistent with the loss-limited framework. We also find that the electron acceleration in both nonthermal limbs of SN 1006 proceeds close to the Bohm diffusion limit, the gyrofactor being in the range 1.5-4. We finally investigate possible explanations for the low values of cutoff energy measured in thermal limbs.Comment: Accepted for publication in Astronomische Nachrichten. Proceedings of the XMM-Newton Science Workshop 201

    Accelerated Electrons in Cassiopeia A: An Explanation for the Hard X-ray Tail

    Get PDF
    We propose a model for the hard X-ray (> 10 keV) emission observed from the supernova remnant Cas A. Lower hybrid waves are generated in strong (mG) magnetic fields, generally believed to reside in this remnant, by shocks reflected from density inhomogeneities. These then accelerate electrons to energies of several tens of keV. Around 4% of the x-ray emitting plasma electrons need to be in this accelerated distribution, which extends up to electron velocities of order the electron Alfven speed, and is directled along magnetic field lines. Bremsstrahlung from these electrons produces the observed hard x-ray emission. Such waves and accelerated electrons have been observed in situ at Comet Halley, and we discuss the viability of the extrapolation from this case to the parameters relevant to Cas A.Comment: 20 pages, 3 figures, aasTeX502, accepted in Ap

    Probing the evolving massive star population in Orion with kinematic and radioactive tracers

    Get PDF
    We assemble a census of the most massive stars in Orion, then use stellar isochrones to estimate their masses and ages, and use these results to establish the stellar content of Orion's individual OB associations. From this, our new population synthesis code is utilized to derive the history of the emission of UV radiation and kinetic energy of the material ejected by the massive stars, and also follow the ejection of the long-lived radioactive isotopes 26Al and 60Fe. In order to estimate the precision of our method, we compare and contrast three distinct representations of the massive stars. We compare the expected outputs with observations of 26Al gamma-ray signal and the extent of the Eridanus cavity. We find an integrated kinetic energy emitted by the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent with the energy thought to be required to create the Eridanus superbubble. We also find good agreement between our model and the observed 26Al signal, estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion region. Our population synthesis approach is demonstrated for the Orion region to reproduce three different kinds of observable outputs from massive stars in a consistent manner: Kinetic energy as manifested in ISM excavation, ionization as manifested in free-free emission, and nucleosynthesis ejecta as manifested in radioactivity gamma-rays. The good match between our model and the observables does not argue for considerable modifications of mass loss. If clumping effects turn out to be strong, other processes would need to be identified to compensate for their impact on massive-star outputs. Our population synthesis analysis jointly treats kinematic output and the return of radioactive isotopes, which proves a powerful extension of the methodology that constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page
    • …
    corecore